

ON THE STABILITY OF THE FIRST ORDER LINEAR RECURRENCE IN TOPOLOGICAL VECTOR SPACES

MOHAMMAD SAL MOSLEHIAN¹ AND DORIAN POPA²

ABSTRACT. Suppose that \mathcal{X} is a sequentially complete Hausdorff locally convex space over a scalar field \mathbb{K} , V is a bounded subset of \mathcal{X} , $(a_n)_{n\geq 0}$ is a sequence in $\mathbb{K}\setminus\{0\}$ with the property $\liminf_{n\to\infty}|a_n|>1$ and $(b_n)_{n\geq 0}$ is a sequence in \mathcal{X} . We show that for every sequence $(x_n)_{n\geq 0}$ in \mathcal{X} satisfying

$$x_{n+1} - a_n x_n - b_n \in V \quad (n \ge 0)$$

there exists a unique sequence $(y_n)_{n\geq 0}$ satisfying the recurrence $y_{n+1} = a_n y_n + b_n$ $(n \geq 0)$ and for every q with $1 < q < \liminf_{n \to \infty} |a_n|$, there exists $n_0 \in \mathbb{N}$ such that

$$x_n - y_n \in \frac{1}{q-1} \overline{conv(V^b)} \quad (n \ge n_0).$$

1. Introduction

The stability problem of functional equations was originally raised by Ulam [19] in 1940 on a talk at Wisconsin University. The problem posed by Ulam was the following: "Under what conditions does there exist an additive mapping near an approximately additive mapping?" The first answer to the question was given by Hyers in the case of Banach spaces [7]. After Hyers' result many papers dedicated to this topic extending Ulam's problem to other

²⁰¹⁰ Mathematics Subject Classification. Primary 39B82; secondary 39A10; 39B72.

Key words and phrases. stability; first order linear recurrence; topological vector spaces; convex hull; balanced hull.