

SCHATTEN p-NORM INEQUALITIES RELATED TO AN EXTENDED OPERATOR PARALLELOGRAM LAW

MOHAMMAD SAL MOSLEHIAN¹, MASARU TOMINAGA², KICHI-SUKE SAITO³

ABSTRACT.

Let C_p be the Schatten p-class for p > 0. Generalizations of the parallelogram law for the Schatten 2-norms have been given in the following form: If $\mathbf{A} = \{A_1, A_2, \dots, A_n\}$ and $\mathbf{B} = \{B_1, B_2, \dots, B_n\}$ are two sets of operators of C_2

$$\sum_{i,j=1}^{n} \|A_i - A_j\|_2^2 + \sum_{i,j=1}^{n} \|B_i - B_j\|_2^2$$

$$= 2 \sum_{i,j=1}^{n} \|A_i - B_j\|_2^2 - 2 \left\| \sum_{i=1}^{n} (A_i - B_i) \right\|_2^2.$$

In this paper, we give a generalization and a complementary inequality of the inequality above. Moreover, we present some related inequalities for three sets of operators.

1. Introduction

Let $\mathbb{B}(\mathcal{H})$ be the algebra of all bounded linear operators on a separable complex Hilbert space \mathcal{H} endowed with inner product $\langle \cdot, \cdot \rangle$. We denote the absolute value of $A \in \mathbb{B}(\mathcal{H})$ by $|A| = (A^*A)^{1/2}$.

Let $A \in \mathbb{B}(\mathcal{H})$ be a compact operator and let 0 . The Schatten <math>p-norm (p-quasi-norm) for $1 \le p < \infty$ ($0) is defined by <math>||A||_p = (\operatorname{tr}|A|^p)^{1/p}$, where tr is the usual trace functional for p > 0. For p > 0, the

²⁰¹⁰ Mathematics Subject Classification. Primary 47A63; Secondary 46C15, 47A30, 47B10, 47B15, 15A60. Key words and phrases. Schatten p-norm; norm inequality; parallelogram law; inner product space; Clarkson inequality.