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ABSTRACT. We give a fixed point approach to the generalized Hyers-Ulam stability of the cubic
equation

fRz+y)+ f2z —y) =2f(z +y) +2f(z ~ y) + 12f(z)
in non-Archimedean normed spaces. We will give an example to show that some known results
in the stability of cubic functiona. equations in real normed spaces fail in non-Archimedean
normea spaces. Finally, some applications of our results in non-Archimedean normed spaces

over p-adic numbers will be exhibited.

1. INTRCDUCTION

The concept of stability of a functional equation arises when one ':Eplacesla functional equation
by an inequality vshich acts as a perturbation of the equation. In 1940, S.M. Ulam [28| posed
the first stability problem. In the next year, D. H. Hyers [8] gave a partial affirmative answer to
the Ulam’s preblem. The theorein of Hyers was generalized by T. Aoki [1] and Beurgin [3]. In
1978, Th. M. Rassias [27] provided a remarkable generalization of Hyers’s result by allowing the
Cauchy difference to be unbounded. In 1994, a generalization of Rassias’ theorem was obtained
by P. Givruta [6] by replacing the bound e(||z||? + |ly||P) by a general control function (z,y).
Several stability results have been recéntly obtained for various equations, also for mappings
with more general domains and ranges (see e.g. [9, 10]).

The functional equation
(1.1) f2z +y) + f(2z = y) = 2f(z + ¥) + 2f(z - y) + 12f(2)
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