

The pair of finite p-groups

Mohammad Reza R. Moghaddam

Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, and
Centre of Excellence in Analysis on Algebraic Structure, Mashhad, Iran
Ali Reza Salemkar*

†Faculty of Mathematical Sciences, Shahid Beheshti University, G.C., Tehran, Iran

M. Davarpanah

Department of Mathematics, Islamic Azad University, Mashhad-Branch, Iran

Abstract

Let M be a normal subgroup of a group G such that $|G/M| = p^m$ and $|M/Z(M,G)| = p^n$. In this paper, assuming $|[M,G]| = p^{\frac{1}{2}n(n+2m-1)-1}$ and $|[M/Z(M,G),G/Z(M,G)]| \le p$, we characterize all the pairs of groups (M,G) which satisfy these conditions.

If M has a complement in G and $|M| = p^n$ and $|G/M| = p^m$, then there always exists a non-negative integer t(M,G) such that $|\mathcal{M}(M,G)| = p^{\frac{1}{2}n(n+2m-1)-t(M,G)}$. Now, under some conditions, we determine all the pairs (M,G) with t(M,G) = 0,1 or 2.

AMS Subject Classification (2010): Primary 20E10, 20E34, 20E36, Secondary 20F14. Keywords and phrases: Schur multiplier, pair of groups, extra-special pair of groups, abelian p-groups.

1 Introduction

Let (M,G) be a pair of groups, in which M is (isomorphic to) a normal subgroup of G. Let [M,G] and Z(M,G) denote the commutator subgroup and the centralizer of G in M,

^{*}Corresponding author

[†]This research was supported by a grant from Ferdowsi University of Mashhad, No. MP86135MOG